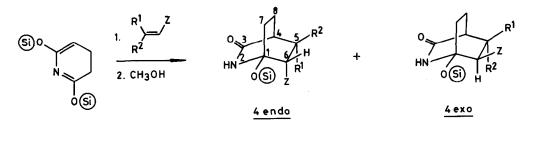

DIELS-ALDER REACTIONS OF 2-AZADIENES. DIASTEREOSELECTIVE SYNTHESES OF 2-AZABICYCL0[2.2.2]OCTAN-2-ONES AND OF 2,3,4-SUBSTITUTED CYCLOHEXANONES.

M. Rivera, H. Lamy-Schelkens, F. Sainte, K. Mbiya and L. Ghosez[^] Laboratoire de Chimie Organique de Synthèse, Université Catholique de Louvain Place L. Pasteur 1, B-1348 Louvain-La-Neuve, BELGIUM.

<u>Summary</u> : Glutarimide is readily disilylated to yield the cyclic 2-azadiene <u>1</u> which reacts with open-chain dienophiles with surprisingly high exo-selectivity. The resulting 2-azabicyclo[2.2.2]octan-3-ones are stereoselectively transformed into substituted cyclohexanones.

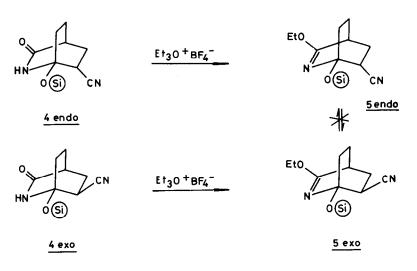

The Diels-Alder reaction of activated 1- and 2-azadienes is a powerful method for the synthesis of nitrogen-containing six-membered rings with a defined substitution pattern^{1,2}.

We have recently prepared the new cyclic 2-azadiene <u>1</u> by silylation of glutarimide (Scheme 1). Compound <u>1</u> is a colourless liquid which is purified by distillation. It can be kept in the refrigerator for several months without substantial change. Compound <u>1</u> readily reacted with maleic anhydride at 0°-20°C to yield a mixture of endo and exo adducts <u>2</u> endo and <u>2 exo</u>. Upon treatment with methanol at room temperature, the most labile silyl group was cleaved and compounds 3 endo and 3 exo were obtained in 70% yield (endo:exo 4:1)³.

Scheme 1

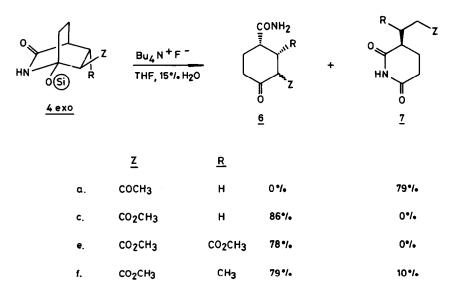
<u>Surprisingly</u>, the reaction of <u>1</u> with open-chain dienophiles took place with a <u>high exo-</u> <u>diastereoselectivity</u> (Scheme 2, Table 1). Methanolysis of the crude adducts yielded compounds <u>4 exo</u> and <u>4 endo</u> which were readily separated by flash chromatography. Configurations were established on the basis of the values⁴ of coupling constants ${}^{3}J_{H_{5}-H_{6}}$ and ${}^{4}J_{H_{6}-H_{7}}$. This was further confirmed by an X-ray crystal structure analysis in the case of 4d (exo)⁵.

Scheme 2


Table 1 : Reactions of 1 with Open-chain Dienophiles

	Z	R1	R ²	Conditions ^{a)}	Yield of <u>4</u> b) (%)	Endo:Exo ^{C)}
a	соснз	Н	Н	60°C, 5hrs	55	14 : 86
b	CN	Н	н	60°C, 48hrs	73	10 : 90
с	с0 ₂ сн ₃	Н	н	60°C, 72hrs	74	8 : 92
d	CO2CH3	C0 ₂ CH3	Н	60°C, 10days	67	0 : 100
е	CO2CH3	Ĥ	с0 ₂ сн ₃	60°C, 35hrs	84	0 : 100
f	CO2CH3	н	сн _з	120°C, 21hrs	67	3:97

a) Cycloadditions in benzene;b) Mixture of endo- and exo-isomers after chromatography;c) Determined on the crude adducts.


It was shown that this high exo-preference was not the result of a thermodynamic equilibrium. Both endo- and exo-isomers of <u>4b</u> were converted into the corresponding iminoethers⁶ <u>5 endo</u> and <u>5 exo</u> (Scheme 3). It was expected that <u>5 endo</u> and <u>5 exo</u> would behave as the corresponding 0-silyl iminoethers which could not be prepared by silylation of <u>4 endo</u> and <u>4-</u> exo^{7} . Both <u>5 endo</u> and <u>5 exo</u> were found to be stable under the conditions used for the cycloaddition. Furthermore they remained unchanged even after 2 days at 120 °C. This unusual exo-selectivity thus appears to be the result of kinetic control.

We also found that compounds 4 exo could readily be transformed into substituted cyclohexanones <u>6</u>. Treatment of 4 exo with tetrabutylammonium fluoride in THF containing 15% H₂O caused the cleavage of the C-N bond when Z = CO₂CH₃. Derivatives of cyclohexanone <u>6</u> were obtained in good yields (Scheme 4).

Scheme 3

When Z is a stronger electron-withdrawing group such as $COCH_3$, cleavage of the C-C bond was observed and a substituted glutarimide <u>7a</u> was obtained. We also found that the amount of H_2O in THF exercises a significant effect on the ratio <u>6:7</u>. Yields of <u>6</u> were lower with 5% of H_2O .

The chemistry described above demonstrates the utility of 2-azadiene <u>l</u> for the stereoselective synthesis of substituted 2-azabicyclo[2.2.2]octanes. It also provides a novel and stereoselective route towards polysubstituted cyclohexanones which should become a useful complement to existing methods. An intriguing feature of the cycloaddition reactions with <u>l</u> is their pronounced exo-stereoselectivity. We are presently studying the structural factors controlling these unusual stereoselectivities.

Acknowledgment

This work was supported by A.G.C.D. (fellowship to M.R.), F.N.R.S. (fellowship to H.L.S.) and S.P.P.S. (fellowship to F.S.)

References and Notes

- Reviews : D.L. Boger, Tetrahedron 1983, <u>39</u>, 2869; L. Ghosez, B. Serckx-Poncin, M. Rivera Ph. Bayard, F. Sainte, A. Demoulin, A.M. Hesbain-Frisque, A. Mockel, L. Munoz and C. Bernard-Henriet, Lect. Het. Chem. 1985, 8, 69; D. Bellus, Lect. Het. Chem. 1987, 9, 65.
- Recent papers :
 - 1-aza-1,3 dienes :

B. Serckx-Poncin, A.M. Hesbain-Frisque and L. Ghosez, Tetrahedron Lett. 1982, <u>23</u>, 3261; Y.S. Cheng, A.T. Lupo, F.W. Fowler, J. Am. Chem. Soc. 1983, <u>105</u>, 7696; M. Komatsu, S. Takamatsu, M. Uesaka, S. Yamamoto, Y. Ohshiro, T. Agawa, J. Org. Chem. 1984, <u>49</u>, 2691; Y.C. Hwang, F.W. Fowler, J. Org. Chem. 1985, <u>50</u>, 2719; M. Ihara, T. Kirihara, K. Fukumoto, T. Kametani, Heterocycles 1985, <u>23</u>, 1097. 2-aza-1,3 dienes :

A. Demoulin, H. Gorissen, A.M. Hesbain-Frisque and L. Ghosez, J. Am. Chem. Soc. 1975, 97, 4409; R. Gompper, U. Heinemann, Angew. Chem. Int. Ed. Engl. 1981, 20, 296; F. Sainte, B. Serckx-Poncin, A.M. Hesbain-Frisque and L. Ghosez, J. Am. Chem. Soc. 1982, 104, 1428; M.M. Ito, Y. Nomura, Y. Takeushi, S. Tomoda, Bull. Chem. Soc. Jpn. 1983, <u>56</u>, 641; J. Barluenga, M. Tomas, A. Ballesteros, V. Gotor, J. Chem. Soc. Chem. Commun. 1987, 1195.

- 3. All new products were characterized by IR, ¹H NMR, ¹³C NMR, elemental analysis or mass spectrometry.
- 4. Examples : 4d(exo), ${}^{3}J_{H_{5}-H_{6}}$ = 12.03 Hz and ${}^{4}J_{H_{6}-H_{7}}$ = 1.95 Hz; 4d(endo), ${}^{3}J_{H_{5}-H_{6}}$ = 11.18 Hz and ${}^{4}J_{H_{6}-H_{7}}$ = 0 Hz; 4e(exo), ${}^{3}J_{H_{5}-H_{6}}$ = 6.29 Hz and ${}^{4}J_{H_{6}-H_{7}}$ = 2.37 Hz.
- 5. We thank Drs J.P. Declercq, B. Tinant and Prof. M. Van Meerssche for the cristallographic studies.
- 6. W. Kantlehner, Adv. Org. Chem. 1979, 9, part 2, 181-277.
- D.L. Birkoffer, D.A. Ritter, Angew. Chem. Int. Ed. Engl. 1965, <u>4</u>, 5, 417. (Received in France 4 July 1988)